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Abstract. In this paper, we study fully discrete monotone finite volume scheme for multidimensional

stochastic balance law driven by multiplicative Lévy noise. The convergence of approximations is proved
towards the unique entropy solution for the underlying problem by using Young measure technique in

stochastic setting.
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1. Introduction

In recent years, there has been a growing interest in the studies of stochastic partial differential
equations. Though a vast literature is available on the subject, interest on hyperbolic conservation
laws with noise have witnessed a surge and there are many interesting questions, related to analytical
and numerical aspects, waiting to be explored. A formal description of our problem as follows. Let(
Ω,P,F ,F = {Ft}t≥0

)
be a filtered probability space satisfying the usual hypotheses i.e. {Ft}t≥0 is a

right-continuous filtration such that F0 contains all the P-null subsets of (Ω,F). In addition, let N(dz, dt)1

be a time homogeneous Poisson random measure on (E, E) with intensity measure m(dz) with respect to
the same stochastic basis, where (E, E ,m) is a σ-finite measure space. In this paper, we are interested in
the study of numerical scheme and numerical approximation for the multi-dimensional nonlinear Cauchy
problem of the following type

du(t, x) + divx
(
~v(t, x)f(u(t, x))

)
dt =

∫
E

η(u(t, x); z) Ñ(dz, dt), (t, x) ∈ ΠT , (1.1)

u(0, x) = u0(x), x ∈ Rd,

where ΠT = [0, T ) × Rd with T > 0 fixed. Here, f : R → R is a given real valued flux function, ~v is

a given vector valued function, u0(x) is a given initial function and Ñ(dz, dt) = N(dz, dt) − m(dz) dt,
the compensated Poisson random measure. Furthermore, (u, z) 7→ η(u, z) is a given real valued function
signifying the multiplicative nature of the noise.

2000 Mathematics Subject Classification. 45K05, 46S50, 49L20, 49L25, 91A23, 93E20.
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1 For the definition of a time homogeneous Poisson random measure, we refer to see [12, pp. 631].
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Equation (1.1) arises in many different fields where non-Gaussianity plays an important role. As for
example, it has been used in models of neuronal activity accounting for synaptic transmissions occurring
randomly in time as well as at different locations on a spatially extended neuron, chemicals reaction-
diffusion systems, market fluctuations both for risk management and option pricing purpose, stochastic
turbulence, etc. The study of well-posedness theory for this kind of equation is of great importance in
the light of current applications in continuum physics.

If η = 0, the equation (1.1) reduces to a standard conservation law in Rd. It is well-documented that
solutions of deterministic conservation laws develop discontinuities(shocks) even in finite time, and hence
weak solutions must be sought. But there are infinitely many weak solutions and therefore an admissible
criteria is required. There exists a satisfactory well-posedness theory based on Kruzkov’s pioneering
idea to picks up the physically relevant solution in an unique way, called entropy solution. We refer to
[23, 27, 32, 36] and references therein for more on entropy solution theory for deterministic conservation
laws.

The study of stochastic balance laws driven by noise is comparatively new area of pursuit. Only
recently balance laws with stochastic forcing have attracted the attention of many authors [2, 3, 4, 8, 9,
10, 11, 14, 16, 17, 18, 22, 26, 28, 35] and resulted in significant momentum in the theoretical development
of such problems.

Due to nonlinear nature of the underlying problem, explicit solution formula is hard to obtain and
hence robust numerical schemes for approximating such equation are very important. In the last decade,
there has been a growing interest in numerical approximation and numerical experiments for entropy
solution to the related Cauchy problem driven by stochastic forcing. The first documented development
in this direction is [24], where the authors proposed an operator-splitting method and constructed an
approximations to prove the existence of path-wise weak solution (possibly non-unique) to the Cauchy
problem driven by Brownian noise in one space dimension. In [5], the author revisited [24], and gen-
eralized the operator-splitting method for the same Cauchy problem but in a bounded domain of Rd.
Using Young measure theory, author established the convergence of approximate solutions to an entropy
solution. We also refer to see [25], where the time splitting method was analyzed for more general noise
coefficient in the spirit of Malliavin calculus and Young measure theory. By using stochastic compen-
sated compactness method, in [30], Kröker and Rohde established the convergence of a semi-discrete
finite volume scheme for strongly monotone numerical flux. In a recent papers [6, 7], Bauzet et. al. have
studied fully discrete scheme via flux-splitting finite volume scheme and monotone finite volume scheme
for stochastic conservation law driven by multiplicative Brownian noise and established its convergence
by using Young measure technique. We also refer to the recent articles by Vovelle et. al.[19, 20], where
a general framework for the analysis of approximations to stochastic scalar conservation laws driven by
cylindrical Brownian noise were developed via kinetic approach along with martingale methods.

The study of numerical schemes for stochastic balance laws driven by Lévy noise is more sparse than the
previous case. A semi-discrete finite difference scheme for a conservation laws driven by a homogeneous
multiplicative Lévy noise has been studied by Koley et. al.[29]. Using BV estimates, the authors showed
the convergence of approximate solutions, generated by the finite difference scheme, to the unique entropy
solution as the spatial mesh size ∆x→ 0 and established rate of convergence which is of order 1

2 . In [31],
the author has studied fully discrete flux-splitting scheme and established convergence of approximate
solutions under certain stability condition on mesh sizes in both space and time.

In this paper, we wish to extend the result [7] in the case of multiplicative Lévy driven noise, and
address the convergence of a fully discrete monotone finite volume scheme for (1.1). First we establish
few essential a-priori estimates for approximate solutions and then using these estimates, we deduce
entropy inequality for approximate solutions. Using Young measure theory, we conclude the convergence
of approximate solutions towards a generalized entropy solution of (1.1).

The rest of the paper is organized as follows. In Sections 2 and 3, we collect all the assumptions for the
subsequent analysis, define proposed numerical scheme and finally state the main result of this article.
Sections 4 and 5 deal with few a-priori estimates on the approximate solutions, and stochastic version of
Young measure theory. Using these a-priori estimates, in Section 6, we establish discrete and continuous
version of entropy inequalities on approximate solutions. The final Section 7 is devoted for the proof of
the main theorem.
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2. Preliminaries and technical framework

It is well-known that due to nonlinear flux term in (1.1), solutions to (1.1) are not necessarily smooth
even if initial data is smooth, and hence must be interpreted via weak sense. Let PT be the predictable
σ-field on [0, T ] × Ω i.e., the σ-field generated by the sets of the form: {0} × A and (s, t] × B for any
A ∈ F0;B ∈ Fs, 0 < s, t ≤ T . The notion of stochastic weak solution is defined as follows:

Definition 2.1 (Weak solution). A square integrable L2(Rd)-valued {Ft : t ≥ 0}-predictable stochastic
process u(t) = u(t, x) is called a stochastic weak solution of (1.1) if ∀ψ ∈ C∞c ([0, T )× Rd) there holds∫

Rd
ψ(0, x)u0(x) dx+

∫
ΠT

{
∂tψ(t, x)u(t, x) + ~v(t, x)f(u(t, x)) · ∇xψ(t, x)

}
dt dx

+

∫
ΠT

∫
E

η(u(t, x); z)ψ(t, x) Ñ(dz, dt) dx = 0 P− a.s.

However, since there are infinitely many weak solutions, one needs to define an extra admissibility
criteria to select physically relevant solution in an unique way, and one such condition is called entropy
condition. Let us begin with the notion of entropy flux pair.

Definition 2.2 (Entropy flux pair). (β, φ) is called an entropy flux pair if β ∈ C2(R) and φ : R 7→ R
such that

φ′(r) = β′(r)f ′(r).

An entropy flux pair (β, φ) is called convex if β′′(s) ≥ 0.

Let A =
{
β ∈ C2(R), convex such that support of β′′ is compact

}
. In the sequel, we will use specific

entropy flux pairs. For any a ∈ R and β ∈ A, define

φ(a) =

∫ a

0

β′(s)f ′(s) ds.

Note that, φ(·) is a Lipschitz continuous function on R and (β, φ) is an entropy flux-pair. To this end,
we define the notion of stochastic entropy solution of (1.1).

Definition 2.3 (Stochastic entropy solution). An L2(Rd)-valued {Ft : t ≥ 0}-predictable stochastic
process u(t) = u(t, x) is called a stochastic entropy solution of (1.1) if the following hold:

i) For each T > 0

sup
0≤t≤T

E
[
||u(t, ·)||22

]
< +∞.

ii) For each 0 ≤ ψ ∈ C∞c ([0,∞)× Rd) and β ∈ A, there holds∫
Rd
ψ(x, 0)β(u0(x)) dx+

∫
ΠT

{
∂tψ(t, x)β(u(t, x)) + φ(u(t, x))~v(t, x) · ∇ψ(t, x)

}
dx dt

+

∫
ΠT

∫
E

∫ 1

0

η(u(t, x); z)β′
(
u(t, x) + λη(u(t, x); z)

)
ψ(t, x) dλ Ñ(dz, dt) dx

+

∫
ΠT

∫
E

∫ 1

0

(1− λ)η2(u(t, x); z)β′′
(
u(t, x) + λη(u(t, x); z)

)
ψ(t, x) dλm(dz) dt dx ≥ 0, P− a.s.

Due to nonlocal nature of the Itô-Lévy formula and the missing noise-noise interaction, Definition 2.3
alone does not give the L1-contraction principle in the sense of average when one tries to compare two
entropy solutions directly, and hence fails to give uniqueness. For the details, we refer to see [14, 22].
However, in view of [2, 9], we can look for so called generalized entropy solution which are L2

(
Rd×(0, 1)

)
-

valued {Ft : t ≥ 0}-predictable stochastic process.

Definition 2.4 (Generalized entropy solution). An L2
(
Rd × (0, 1)

)
-valued {Ft : t ≥ 0}-predictable

stochastic process u(t) = u(t, x, α) is called a generalized stochastic entropy solution of (1.1) provided
(1) For each T > 0

sup
0≤t≤T

E
[
||u(t, ·, ·)||22

]
< +∞.
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(2) For all test functions 0 ≤ ψ ∈ C1,2
c ([0,∞)× Rd), and any β ∈ A, the following inequality holds∫

Rd
β(u0(x))ψ(x, 0) dx+

∫
ΠT

∫ 1

0

{
β(u(t, x, α))∂tψ(t, x) + φ(u(t, x, α))~v(t, x) · ∇xψ(t, x)

}
dt dx

+

∫
ΠT

∫
E

∫ 1

0

∫ 1

0

η(u(t, x, α); z)β′
(
u(t, x, α) + λη(u(t, x, α); z)

)
ψ(t, x) dα dλ Ñ(dz, dt) dx

+

∫
ΠT

∫
E

∫ 1

0

∫ 1

0

(1− λ)η2(u(t, x, α); z)β′′
(
u(t, x, α) + λη(u(t, x, α); z)

)
× ψ(t, x)dλm(dz) dt dx ≥ 0, P− a.s. (2.1)

The aim of this paper is to establish convergence of approximate solutions, constructed via monotone
finite volume scheme (cf. Section 3), to the unique entropy solution of (1.1) and we will do so under the
following assumptions:

A.1 f : R 7→ R is C2 and Lipschitz continuous with f(0) = 0.
A.2 ~v : [0, T ]× Rd 7→ Rd is a C1 function with divx~v(t, x) = 0 for all (t, x) ∈ ΠT . Furthermore, there

exists V < +∞ such that |~v(t, x)| ≤ V for all (t, x) ∈ ΠT .
A.3 There exist positive constant 0 < λ∗ < 1 and h1(z) ∈ L2(E,m) with 0 ≤ h1(z) ≤ 1 such that

for all u, v ∈ R; z ∈ E

|η(u; z)− η(v; z)| ≤ λ∗|u− v|h1(z).

Moreover, η(0; z) = 0 for all z ∈ E. Furthermore, there exists C∗ > 0 such that |η(u, z)| ≤
C∗h1(z) for all u ∈ R and z ∈ E.

A.4 The initial function u0(x) is a L2(Rd)-valued F0 measurable random variable satisfying

E
[
||u0(·)||22

]
< +∞.

Remark 2.1. Note that we need the assumption A.1 to get entropy solution for the initial data in
L2(Rd) to control the multi-linear integrals terms. The assumption A.3 is needed to handle the nonlocal
nature of the entropy inequalities. Boundedness of η is needed to validate Proposition 6.3.

In view of [9, 31], we have the following existence and uniqueness results.

Theorem 2.1. Suppose the assumptions A.1-A.4 hold true. Then there exists a generalized entropy
solution of (1.1) in the sense of Definition 2.4.

Theorem 2.2. Under the assumptions A.1-A.4, the generalized entropy solution of (1.1) is unique.
Moreover, it is the unique stochastic entropy solution.

3. Monotone finite volume schemes and statement of the main result

Our main point of interest is to propose numerical approximations for the problem (1.1) and analyze
its convergence. To this end, we introduce the space discretization by finite volumes (control volumes).
For that we need to recall the definition of so called admissible meshes for finite volume scheme (cf. [21]).

Definition 3.1 (Admissible mesh). An admissible mesh T of Rd is a family of disjoint polygonal con-
nected subset of Rd satisfying the following:

i) Rd is the union of the closure of the elements (called control volume) of T .
ii) The common interface of any two elements of T is included in a hyperplane of Rd.
iii) There exists nonnegative constant α such thatαh

d ≤ |K|

|∂K| ≤ 1

α
hd−1 ∀K ∈ T ,

(3.1)

where h = sup
{

diam(K) : K ∈ T
}
< +∞, |K| denotes the d-dimensional Lebesgue measure of

K, and |∂K| represents the (d− 1)-dimensional Lebesgue measure of ∂K.

In the sequel, we denote the followings:

• EK : the set of interfaces of the control volume K.
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• N (K): the set of control volumes neighbors of the control volume K.
• σK,L: the common interface between K and L for any L ∈ N (K).
• E : the set of all the interfaces of the mesh T .
• nK,σ: the unit normal vector to interface σK,L, oriented from K to L, for any L ∈ NK .
• dν: the d− 1 dimensional Lebesgue measure.

In view of (3.1), we note that

|∂K|
|K|

≤ 1

α2h
(3.2)

holds. We will use this inequality (3.2) several times in the later analysis.
As we emphasized, we shall study the fully discrete monotone finite volume scheme for (1.1). For that,

one needs to discretize time variable also. To do this, we proceed as follows: let N be a positive integer
and T > 0 be a fixed time. Set k = T

N and tn = nk, n = 0, 1, · · · , N . Then {tn : n = 0, 1, · · · , N} splits
the time interval [0, T ] into equal step length k. Before defining the monotone finite volume scheme, let
us recall the definition of a monotone numerical flux.

Definition 3.2 (Monotone numerical flux). Any function F ∈ C(R2;R) is said to be monotone numerical
flux associated to the flux function f , if the following conditions hold:

(a) The function F satisfies F (v, v) = f(v), for all v ∈ R.
(b) The function F is non-decreasing with respect to the first argument and non-increasing with

respect to the second argument, i.e.,

∂

∂u
F (u, v) ≥ 0,

∂

∂v
F (u, v) ≤ 0, for all u, v ∈ R.

(c) There exist two constant F1, F2 > 0 such that for any a, b, c ∈ R, it holds that{∣∣F (a, b)− F (c, b)
∣∣ ≤ F1

∣∣a− c|,∣∣F (a, b)− F (a, c)
∣∣ ≤ F2

∣∣b− c|.
Following [13], we propose the following monotone finite volume scheme to approximate the solution

of (1.1): for any K ∈ T , and n ∈ {0, 1, 2, · · · , N − 1}, define the discrete unknowns unK as

|K|
k

(
un+1
K − unK

)
+

∑
L∈N (K)

|σK,L|
{
vnK,LF (unK , u

n
L)− vnL,KF (unL, u

n
K)
}

=
|K|
k

∫ tn+1

tn

∫
E

η(unK ; z)Ñ(dz, dt), (3.3)

u0
K =

1

|K|

∫
K

u0(x) dx,

where, F is a monotone numerical flux and
vnK,L =

1

k|σK,L|

∫ tn+1

tn

∫
σK,L

(
~v(t, x) · nK,L

)+
dν(x) dt,

vnL,K =
1

k|σK,L|

∫ tn+1

tn

∫
σK,L

(
~v(t, x) · nL,K

)+
dν(x) dt.

We define approximate finite volume solutions on ΠT as piecewise constant generated by the discrete
solutions unK :

uhT ,k(t, x) = unK for x ∈ K and t ∈ [tn, tn+1). (3.4)

Remark 3.1. In view of the properties of stochastic integral with respect to compensated Poisson
random measure, each unK is Fnk - measurable for K ∈ T and n ∈ {0, 1, · · · , N}. Thus, uhT ,k(t, ·) is an

L2(Rd)-valued Ft- predictable stochastic process as u0 satisfies A.4.

Main Theorem. Let the assumptions A.1-A.4 be true and T be an admissible mesh on Rd with size h
in the sense of Definition 3.1. Let k be the time step as discussed above and assume that

k

h
→ 0 as h→ 0. (3.5)
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Let uhT , k(t, x) be the approximate solutions prescribed by (3.4). Then, there exists a L2(Rd×(0, 1))-valued

{Ft : t ≥ 0}-predictable process u = u(t, x, α) such that

i) u(t, x, α) is a generalized entropy solution of (1.1) and uhT ,k(t, x) 7→ u(t, x, α) in the sense of
Young measure.

(ii) uhT ,k(t, x) 7→ ū(t, x) in Lploc(Rd;Lp(Ω × (0, T ))) for 1 ≤ p < 2, where ū(t, x) =
∫ 1

0
u(t, x, α) dα is

the unique stochastic entropy solution of (1.1).

4. A-priori estimates

This section is devoted to a-priori estimates for uhT , k(t, x), which will be very useful to prove the
convergence of the proposed scheme. We use the letter C to denote various generic constant which may
change line to line. The Euclidean norm on Rd is denoted by | · |. We denote cη =

∫
E
h2

1(z)m(dz), which
is a finite constant, thanks to the assumption A.3. We start with the following lemma which is essentially
a uniform moment estimate.

Lemma 4.1. Let the assumptions A.1-A.4 hold and T > 0 be fixed. Consider an admissible mesh T on
Rd with size h in the sense of Definition 3.1. Let k = T

N be the time step for some N ∈ N∗, satisfying
the Courant-Friedrichs-Levy (CFL) condition

k ≤ α2h

(F1 + F2)V
. (4.1)

Then the approximate solution uhT ,k satisfies the following bound:

‖uhT ,k‖2L∞(0,T ;L2(Ω×Rd)) ≤ e
cηTE

[
||u0||22

]
. (4.2)

Consequently, one has

‖uhT ,k‖2L2(Ω×ΠT ) ≤ T e
cηTE

[
||u0||22

]
.

Proof. To prove (4.2), it is enough to prove: for each n ∈ {0, 1, · · · , N − 1}, the following property holds∑
K∈T

|K|E
[
(unK)2

]
≤
(
1 + kcη

)nE[||u0||22
]
. (4.3)

We will use mathematical induction to prove (4.3). Observe that∑
K∈T

|K|E
[
(u0
K)2

]
=
∑
K∈T

|K|E
[( 1

|K|

∫
K

u0(x) dx
)2]
≤ E

[
||u0||22

]
=
(
1 + kcη

)0E[||u0||22
]
.

Set n ∈
{

0, 1, cdots,N − 1
}

and suppose that (4.3) holds for n. We will show that (4.3) holds for n+ 1.
To this end, thanks to the assumption A.2, we observe that∑

L∈N (K)

|σK,L|
(
vnK,L − vnL,K

)
= 0, (4.4)

∑
L∈N (K)

|σK,L|
(
vnK,L + vnL,K

)
≤ V |∂K|. (4.5)

Invoking (4.4), the scheme (3.3) reduces to

|K|
k

(
un+1
K − unK

)
+

∑
L∈N (K)

|σK,L|
{
vnK,L

(
F (unK , u

n
L)− f(unK)

)
− vnL,K

(
F (unL, u

n
K)− f(unK)

)}
=
|K|
k

∫ tn+1

tn

∫
E

η(unK ; z)Ñ(dz, dt). (4.6)

Multiplying (4.6) by unK , we have, after taking expectation together with Itô isometry

|K|
2

E
[
(un+1
K )2 − (unK)2

]
=

(k)2

2|K|
E
[( ∑

L∈N (K)

|σK,L|
{
vnK,L

(
F (unK , u

n
L)− f(unK)

)
− vnL,K

(
F (unL, u

n
K)− f(unK)

)})2]
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− kE
[ ∑
L∈N (K)

|σK,L|
{
vnK,L

(
F (unK , u

n
L)− f(unK)

)
− vnL,K

(
F (unL, u

n
K)− f(unK)

)}
unK

]
+
|K|
2

E
[ ∫ tn+1

tn

∫
E

η2(unK ; z)m(dz) dt
]

≡ B1 − B2 + B3. (4.7)

We will estimate each of the above term separately. First we consider the term B2. To that context, we
define

Tn :=
{

(K,L) ∈ T 2 : L ∈ N (K) and unK > unL
}

and

B4 : = k
∑

(K,L)∈Tn

|σK,L|E
[
vnK,L

{
unK
(
F (unK , u

n
L)− f(unK)

)
− unL

(
F (unK , u

n
L)− f(unL)

)}
− vnL,K

{
unK
(
F (unL, u

n
K)− f(unK)

)
− unL

(
F (unL, u

n
K)− f(unL)

)}]
.

Note that
∑
K∈T
B2 = B4. Proceeding similarly as in the proof of [7, Proposition 1], we arrive at

B4 ≥ k
∑

(K,L)∈Tn

|σK,L|E

[
vnK,L

2(F1 + F2)

{(
f(unK)− F (unK , u

n
L)
)2

+
(
f(unL)− F (unK , u

n
L)
)2}

+
vnL,K

2(F1 + F2)

{(
f(unK)− F (unL, u

n
K)
)2

+
(
f(unL)− F (unL, u

n
K)
)2}]

. (4.8)

Next we move on to estimate B1. Using Cauchy-Schwarz inequality, (3.2) and the CFL condition (4.1)
along with the convexity of the function x 7→ x2 (cf. [7, Proposition 1]), one has

∑
K∈T

B1 ≤
∑

(K,L)∈Tn

k|σK,L|
2(F1 + F2)

E

[
vnK,L

{(
f(unK)− F (unK , u

n
L)
)2

+
(
f(unL)− F (unK , u

n
L)
)2}

+ vnL,K

{(
f(unK)− F (unL, u

n
K)
)2

+
(
f(unL)− F (unL, u

n
K)
)2}]

. (4.9)

Again, thanks to the assumption A.3, we obtain

B3 ≤
k|K|

2
cηE

[
(unK)2

]
. (4.10)

We combine (4.9), (4.8) and (4.10) in (4.7) to conclude∑
K∈T

|K|
2

E
[
(un+1
K )2

]
≤
∑
K∈T

|K|
2

(
1 + k cη

)
E
[
(unK)2

]
.

Thus, we have ∑
K∈T

|K|E
[
(un+1
K )2

]
≤
(
1 + k cη

) ∑
K∈T

|K|E
[
(unK)2

]
≤
(
1 + k cη

)n+1E
[
||u0||22] (by induction hypothesis).

In other words, (4.2) holds as well. As a consequence

‖uhT ,k‖2L2(Ω×ΠT ) =

N−1∑
n=0

∑
K∈T

k|K|E
[
(unK)2

]
≤ T ecηTE

[
||u0||22

]
.

This completes the proof. �
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Lemma 4.2 (Weak BV estimate). Let T > 0 and T be an admissible mesh with size h in the sense of
Definition 3.1. Let k = T

N be the time step for some N ∈ N∗ satisfying the CFL condition

k ≤ (1− ξ)α2h

(F1 + F2)V
, for some ξ ∈ (0, 1). (4.11)

Let unK : K ∈ T , n ∈ {0, 1, · · · , N − 1} be discrete unknowns as in (3.3). Then the following hold:

a) There exists C1 ≡ C1(T, u0, ξ, F1, F2, cη) ∈ R∗+ such that

N−1∑
n=0

k
∑
K∈T

∑
L∈N (K)

|σK,L|E
[
vnK,L

(
f(unK)− F (unK , u

n
L)
)2

+ vnL,K
(
f(unL)− F (unL, u

n
K)
)2] ≤ C1.

b) Let R be a positive constant such that h < R. Define{
TR =

{
K ∈ T : K ⊂ B(0, R)

}
T Rn =

{
(K,L) ∈ T 2

R : L ∈ N (K) and unK > unL
}
.

Then there exists C2 ≡ C2(R, d, T, u0, ξ, F1, F2, cη) ∈ R∗+ such that

N−1∑
n=0

k
∑

(K,L)∈T Rn

|σK,L|E

[
vnK,L

{
max

unL≤c≤d≤unK

(
F (d, c)− f(d)

)
+ max
unL≤c≤d≤unK

(
F (d, c)− f(c)

)}

+ vnL,K

{
max

unL≤c≤d≤unK

(
f(d)− F (c, d)

)
+ max
unL≤c≤d≤unK

(
f(c)− F (c, d)

)}]
≤ C2h

− 1
2 .

Proof. Consider the numerical scheme given in (4.6)

|K|
k

(
un+1
K − unK

)
+

∑
L∈N (K)

|σK,L|
{
vnK,L

(
F (unK , u

n
L)− f(unK)

)
− vnL,K

(
F (unL, u

n
K)− f(unK)

)}
=
|K|
k

∫ tn+1

tn

∫
E

η(unK ; z)Ñ(dz, dt). (4.12)

Multiplying (4.12) by k unK , taking expectation and summation over K ∈ T and n ∈
{

0, 1, · · · , N − 1
}

,
we obtain

N−1∑
n=0

∑
K∈T

∑
L∈N (K)

k |σK,L|E
[{
vnK,L

(
F (unK , u

n
L)− f(unK)

)
− vnL,K

(
F (unL, u

n
K)− f(unK)

)}
unK

]

+

N−1∑
n=0

∑
K∈T

|K|E
[(
un+1
K − unK

)
unK

]
= 0

i.e., A+ C = 0.

We will estimate each of the terms A and C separately. Let us start with C. Using the formula ab =
1
2

[
(a+ b)2 − a2 − b2

]
and (4.12), we get, thanks to Itô isometry

C =
1

2

{ ∑
K∈T

N−1∑
n=0

|K|E
[
(un+1
K )2 − (unK)2

]
−
∑
K∈T

N−1∑
n=0

|K|E
[( ∫ tn+1

tn

∫
E

η(unK ; z)Ñ(dz, dt)

− k

|K|
∑

L∈N (K)

|σK,L|
{
vnK,L

(
F (unK , u

n
L)− f(unK)

)
− vnL,K

(
F (unL, u

n
K)− f(unK)

)})2]}

= −1

2

∑
K∈T

N−1∑
n=0

{
k2

|K|
E
[( ∑

L∈N (K)

|σK,L|
{
vnK,L

(
F (unK , u

n
L)− f(unK)

)
− vnL,K

(
F (unL, u

n
K)

− f(unK)
)})2]

+ |K|E
[ ∫ tn+1

tn

∫
E

η2(unK ; z)m(dz) dt
]}
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+
1

2

∑
K∈T

|K|E
[
(uNK)2 − (u0

K)2
]

≡ C1 + C2,
where

C1 = −1

2

∑
K∈T

N−1∑
n=0

{
k2

|K|
E
[( ∑

L∈N (K)

|σK,L|
{
vnK,L

(
F (unK , u

n
L)− f(unK)

)
− vnL,K

(
F (unL, u

n
K)

− f(unK)
)})2]

+ |K|E
[ ∫ tn+1

tn

∫
E

η2(unK ; z)m(dz) dt
]}
,

C2 =
1

2

∑
K∈T

|K|E
[
(uNK)2 − (u0

K)2
]
.

First we estimate C1. To this end, we rewrite C1 as

C1 = −
∑
K∈T

N−1∑
n=0

{
B1 +

1

2
|K|E

[ ∫ tn+1

tn

∫
E

η2(unK ; z)m(dz) dt
]}
,

where B1 is defined in the proof of Lemma 4.1. A similar argument (cf. estimation of (4.9) with the CFL
condition (4.11)) reveals that∑

K∈T
B1 ≤

∑
(K,L)∈Tn

(1− ξ) k|σK,L|
2(F1 + F2)

E

[
vnK,L

{(
f(unK)− F (unK , u

n
L)
)2

+
(
f(unL)− F (unK , u

n
L)
)2}

+ vnL,K

{(
f(unK)− F (unL, u

n
K)
)2

+
(
f(unL)− F (unL, u

n
K)
)2}]

≤
∑

(K,L)∈Tn

(1− ξ)E

[
vnK,L

{
max

unL≤c≤d≤unK

(
F (d, c)− f(d)

)2
+ max
unL≤c≤d≤unK

(
F (d, c)− f(c)

)2}

+ vnL,K

{
max

unL≤c≤d≤unK

(
f(d)− F (c, d)

)2
+ max
unL≤c≤d≤unK

(
f(c)− F (c, d)

)2}] k|σK,L|
2(F1 + F2)

.

Again, thanks to the assumption A.3, we see that

|K|E
[ ∫ tn+1

tn

∫
E

η2(unK ; z)m(dz) dt
]
≤ cη|K|kE

[
(unK)2

]
,

and hence, one has the following lower bound of C1:

C1 ≥ −
N−1∑
n=0

k
∑

(K,L)∈Tn

E

[
vnK,L

{
max

unL≤c≤d≤unK

(
F (d, c)− f(d)

)2
+ max
unL≤c≤d≤unK

(
F (d, c)− f(c)

)2}

+ vnL,K

{
max

unL≤c≤d≤unK

(
f(d)− F (c, d)

)2
+ max
unL≤c≤d≤unK

(
f(c)− F (c, d)

)2}] |σK,L|
(F1 + F2)

(1− ξ)
2

− 1

2

N−1∑
n=0

k
∑
K∈T

|K|E
[
(unK)2

]
.

Invoking (4.3) and the lower bound of C1 , we arrive at the following lower bound of C:

C ≥ −
N−1∑
n=0

k
∑

(K,L)∈Tn

E

[
vnK,L

{
max

unL≤c≤d≤unK

(
F (d, c)− f(d)

)2
+ max
unL≤c≤d≤unK

(
F (d, c)− f(c)

)2}

+ vnL,K

{
max

unL≤c≤d≤unK

(
f(d)− F (c, d)

)2
+ max
unL≤c≤d≤unK

(
f(c)− F (c, d)

)2}] |σK,L|
(F1 + F2)

(1− ξ)
2

− 1

2
T cηe

T cηE
[
||u0||22

]
− 1

2
E
[
||u0||22

]
. (4.13)
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Next we consider A. Arguing similarly as in the proof of Lemma 4.1 (cf. treatment of the term∑
K∈T

B2 = B4), one can rewrite A as

A =

N−1∑
n=0

k
∑

(K,L)∈Tn

|σK,L|E

[
vnK,L

∫ unL

unK

(
f(s)− F (unK , u

n
L)
)
ds+ vnL,K

∫ unK

unL

(
f(s)− F (unL, u

n
K)
)
ds

]
.

To find a lower bound of A, we follow the same calculations as in [7, Proposition 2], and arrive at

A ≥
N−1∑
n=0

k
∑

(K,L)∈Tn

E

[
vnK,L

{
max

unL≤c≤d≤unK

(
F (d, c)− f(d)

)2
+ max
unL≤c≤d≤unK

(
F (d, c)− f(c)

)2}

+ vnL,K

{
max

unL≤c≤d≤unK

(
f(d)− F (c, d)

)2
+ max
unL≤c≤d≤unK

(
f(c)− F (c, d)

)2}] |σK,L|
2(F1 + F2)

. (4.14)

Since A+ C = 0, we obtain, from (4.13) and (4.14)

N−1∑
n=0

k
∑

(K,L)∈Tn

|σK,LE

[
vnK,L

{
max

unL≤c≤d≤unK

(
F (d, c)− f(d)

)2
+ max
unL≤c≤d≤unK

(
F (d, c)− f(c)

)2}

+ vnL,K

{
max

unL≤c≤d≤unK

(
f(d)− F (c, d)

)2
+ max
unL≤c≤d≤unK

(
f(c)− F (c, d)

)2}] ≤ (F1 + F2)

ξ
C̃1,

where C̃1 =
(

1+T cηe
T cη
)
E
[
||u0||22

]
. In other words, there exists C1 ≡ C1(T, u0, ξ, F1, F2, cη) ∈ R∗+ such

that
N−1∑
n=0

k
∑

(K,L)∈Tn

|σK,LE

[
vnK,L

{
max

unL≤c≤d≤unK

(
F (d, c)− f(d)

)2
+ max
unL≤c≤d≤unK

(
F (d, c)− f(c)

)2}

+ vnL,K

{
max

unL≤c≤d≤unK

(
f(d)− F (c, d)

)2
+ max
unL≤c≤d≤unK

(
f(c)− F (c, d)

)2}] ≤ C1.

Re-ordering the summation validates the assertion of the first part of the lemma

N−1∑
n=0

k
∑
K∈T

∑
L∈N (K)

|σK,L|E
[
vnK,L

(
f(unK)− F (unK , u

n
L)
)2

+ vnL,K
(
f(unL)− F (unL, u

n
K)
)2]

≤
N−1∑
n=0

k
∑

(K,L)∈Tn

|σK,LE
[
vnK,L

{
max

unL≤c≤d≤unK

(
F (d, c)− f(d)

)2
+ max
unL≤c≤d≤unK

(
F (d, c)− f(c)

)2}
+ vnL,K

{
max

unL≤c≤d≤unK

(
f(d)− F (c, d)

)2
+ max
unL≤c≤d≤unK

(
f(c)− F (c, d)

)2}] ≤ C1.

To prove the second part of the lemma, we proceed as follows. Let
T1 = max

unL≤c≤d≤unK

(
F (d, c)− f(d)

)
+ max
unL≤c≤d≤unK

(
F (d, c)− f(c)

)
,

T2 = max
unL≤c≤d≤unK

(
f(d)− F (c, d)

)
+ max
unL≤c≤d≤unK

(
f(c)− F (c, d)

)
.

Then, one has
T 2

1 ≤ 2
{

max
unL≤c≤d≤unK

(
F (d, c)− f(d)

)2
+ max
unL≤c≤d≤unK

(
F (d, c)− f(c)

)2}
,

T 2
2 ≤ 2

{
max

unL≤c≤d≤unK

(
f(d)− F (c, d)

)2
+ max
unL≤c≤d≤unK

(
f(c)− F (c, d)

)2}
.

Following calculations as in Bauzet et. al.[7, Proposition 2], we obtain(
N−1∑
n=0

k
∑

(K,L)∈T Rn

|σK,L|E
[
vnK,LT1 + vnL,KT2

])2

≤ 2T C1 V
hd−1

α

|B(0, R)|
αhd

≤ C̃2

h
,
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where C̃2 = 2T C1
V
α2 |B(0, R)| and C1 is a constant as in Lemma 4.2, a). Equivalently, we obtain

N−1∑
n=0

k
∑

(K,L)∈T Rn

|σK,L|E

[
vnK,L

{
max

unL≤c≤d≤unK

(
F (d, c)− f(d)

)
+ max
unL≤c≤d≤unK

(
F (d, c)− f(c)

)}

+ vnL,K

{
max

unL≤c≤d≤unK

(
f(d)− F (c, d)

)
+ max
unL≤c≤d≤unK

(
f(c)− F (c, d)

)}]
≤ C2h

− 1
2

for some constant C2 ≡ (R, d, T, u0, ξ, F1, F2, cη) ∈ R∗+. This completes the proof. �

5. Young measure and convergence of approximate solutions

Our main aim of this article is to establish the convergence of approximate solutions to the unique
entropy solution of (1.1). Note that a-priori estimates on uhT ,k(t, x) given by Lemma 4.1 only guarantee

weak compactness of the family {uhT ,k}h>0, which is inadequate in view of the nonlinearities in the
equation. The concept of Young measure theory is appropriate in this case. We now recapitulate the
results we shall use from Young measure theory due to [15, 33] for the deterministic setting, and [1] for
the stochastic version of the theory.

Roughly speaking a Young measure is a parametrized family of probability measures where the pa-
rameters are drawn from a measure space. Let (Θ,Σ, µ) be a σ-finite measure space and P(R) be the
space of probability measures on R.

Definition 5.1 (Young Measure). A Young measure from Θ into R is a map τ 7→ P(R) such that for any
φ ∈ Cb(R), θ 7→ 〈τ(θ), φ〉 :=

∫
R φ(ξ)τ(θ)(dξ) is measurable from Θ to R. The set of all Young measures

from Θ into R is denoted by R(Θ,Σ, µ).

In this context, we mention that with an appropriate choice of (Θ,Σ, µ), the family {uhT ,k}h>0 can be
thought of as a family of Young measures. We are interested in finding a subsequences out of this family
that “converges” to a Young measure in a suitable sense. To this end, we set

Θ = Ω× (0, T )× Rd, Σ = PT × L(Rd) and µ = P⊗ λt ⊗ λx,

where λt and λx are respectively the Lebesgue measures on (0, T ) and Rd. Moreover, for M ∈ N, set
ΘM = Ω× (0, T )×BM , where BM be the ball of radius M around zero in Rd. With the above setting at
hand, we sum up the necessary results in the following proposition to carry over the subsequent analysis.
For its proof, we refer to see [9].

Proposition 5.1. Let {uhT , k(t, x)}h>0 be a sequence of L2(Rd)-valued predictable processes such that

(4.2) holds.Then there exists a subsequence {hn} with hn → 0 and a Young measure τ ∈ R(Θ,Σ, µ) such
that the following hold:

i) If g(θ, ξ) is a Carathéodory function on Θ×R such that supp(g) ⊂ ΘM ×R for some M ∈ N and

{g(θ, uhnT ,k(θ))}n (where θ ≡ (ω; t, x)) is uniformly integrable, then

lim
hn→0

∫
Θ

g(θ, uhnT ,k(θ))µ(dθ) =

∫
Θ

[ ∫
R
g(θ, ξ)τ(θ)(dξ)

]
µ(dθ).

ii) Denoting a triplet (ω; t, x) ∈ Θ by θ, we define

u(θ, α) = inf
{
c ∈ R : τ(θ)

(
(−∞, c)

)
> α

}
for α ∈ (0, 1) and θ ∈ Θ.

Then, the function u(θ, α) is non-decreasing, right continuous on (0, 1) and PT ×L(Rd× (0, 1))-
measurable. Moreover, if g(θ, ξ) is a nonnegative Carathéodory function on Θ× R, then∫

Θ

[ ∫
R
g(θ, ξ)τ(θ)(dξ)

]
µ (dθ) =

∫
Θ

∫ 1

0

g(θ,u(θ, α)) dαµ(dθ).

Thanks to Proposition 5.1 and the uniform moment estimate (4.2), one can use Fatou’s lemma to
obtain

sup
0≤t≤T

E
[
||u(t, ·, ·)||22

]
< +∞.

Here we remark that, u(θ, α) will be a convenient generalized entropy solution of (1.1).
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6. On entropy inequalities for approximate solutions

In this section, we establish entropy inequality for fully discrete monotone finite volume approximate
solution. Since we are in stochastic set up, one needs to encounter the Itô calculus, and therefore it is
natural to consider a time-continuous approximate solution constructed from uhT ,k.

6.1. Time-continuous approximate solution. Let T be an admissible mesh in Rd. Define a time-
continuous discrete approximations, denoted by vnK(ω, s) on Ω × [tn, tn+1], n ∈ {0, 1, · · · , N − 1} and
K ∈ T from the discrete unknowns unK prescribed by (4.6) as

vnK(ω, s) = unK −
∫ s

tn

∑
L∈N (K)

|σK,L|
{
vnK,L

(
F (unK , u

n
L)− f(unK)

)
− vnL,K

(
F (unL, u

n
K)− f(unK)

)}
+

∫ s

tn

∫
E

η(unK ; z)Ñ(dz, dt). (6.1)

Observe that {
vnK(ω, tn) = unK
vnK(ω, tn+1) = un+1

K .

We drop ω and write vnK(·) instead of vnK(ω, ·). Now we define a time-continuous approximate solutions
vhT ,k(t, x) on ΠT by

vhT ,k(t, x) = vnK(t), x ∈ K, t ∈ [0, T ). (6.2)

It is now natural to estimate the L2-error between uhT ,k and vhT ,k. To this end, we have the following
proposition.

Proposition 6.1. Let the assumptions of Lemma 4.2 hold, and uhT ,k be the finite volume approximate

solution defined by (3.3) and (3.4), and vhT ,k be the corresponding time-continuous approximate solution

prescribed by (6.1) and (6.2). Then there exits a constant C3 ∈ R∗+, independent of h and k such that

‖vhT ,k − uhT ,k‖2L2(Ω×ΠT ) ≤ C3

(
h+ k

)
.

Proof. Let uhT ,k (respectively vhT ,k) be the approximate solution (respectively time-continuous approxi-

mate solution) defined by (3.3) and (3.4)(respectively (6.1) and (6.2)). Now

‖vhT ,k − uhT ,k‖2L2(Ω×ΠT )

=
∑
K∈T

N−1∑
n=0

∫ tn+1

tn

∫
K

E

[(
s− tn
|K|

∑
L∈N (K)

|σK,L|
{
vnK,L

(
F (unK , u

n
L)− f(unK)

)

− vnL,K
(
F (unL, u

n
K)− f(unK)

)}
−
∫ s

tn

∫
E

η(unK ; z)Ñ(dz, dt)

)2]
dx ds

(by Itô isometry)

=
∑
K∈T

N−1∑
n=0

∫ tn+1

tn

∫
K

E
[ ∫ s

tn

∫
E

η2(unK ; z)m(dz) dt
]
dx ds

+
∑
K∈T

N−1∑
n=0

∫ tn+1

tn

∫
K

E
[(s− k
|K|

∑
L∈N (K)

|σK,L|
{
vnK,L

(
F (unK , u

n
L)− f(unK)

)
− vnL,K

(
F (unL, u

n
K)− f(unK)

)})2]
dx ds

(by Cauchy-Schwartz inequality)

≤
∑
K∈T

N−1∑
n=0

k3

|K|

{ ∑
L∈N (K)

|σK,L|E
[
vnK,L

(
F (unK , u

n
L)− f(unK)

)2
+ vnL,K

(
F (unL, u

n
K)− f(unK)

)2]
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×
( ∑
σ∈EK

|σK,L|
(
vnK,L + vnL,K

))}
+ cηk

∑
K∈T

N−1∑
n=0

k|K|E
[
(unK)2

]
(by the inequalities (3.2) and (4.5))

≤
∑
K∈T

N−1∑
n=0

V k3

α2h

∑
L∈N (K)

|σK,L|E
[
vnK,L

(
F (unK , u

n
L)− f(unK)

)2
+ vnL,K

(
F (unL, u

n
K)− f(unK)

)2]
+ cηk‖uhT ,k‖2L2(Ω×ΠT )

≤ k2V

α2h
C1 + cηk‖uhT ,k‖2L2(Ω×ΠT ) (by Lemma 4.2, a))

≤ h (1− ξ)2α2

(F1 + F2)2V
C1 + cηk‖uhT ,k‖2L2(Ω×ΠT ) (by (4.11))

≤ C3

(
h+ k

)
,

where C3 = max
{

(1−ξ)2α2

(F1+F2)2V C1, cη ‖uhT ,k‖2L2(Ω×ΠT )

}
∈ R∗+, independent of h and k. This completes the

proof. �

6.2. Entropy inequalities for the approximate solutions. In this subsection, we derive the entropy
inequalities for uhT ,k which will be used to prove the convergence of the numerical scheme, and hence the

existence of entropy solution of (1.1). To do so, we first need to derive the entropy inequalities for the
discrete unknowns unK , K ∈ T , n ∈ {0, 1, 2, . . . , N − 1}.

It is well-known that any monotone numerical flux could be decompose into a sum of Godunov flux
and a modified Lax-Friedrichs flux. More precisely, we have the following lemma, whose proof could be
found in [7, 21].

Lemma 6.2. Any monotone numerical flux F can be written as a convex combination of a Godunov flux
and a modified Lax-Friedrichs flux as follows: for any a, b ∈ R, there exists θ(a, b) ∈ [0, 1] such that

F (a, b) = θ(a, b)FG(a, b) +
(
1− θ(a, b)

)
FLFD (a, b),

where FG is a Godunov flux given by

FG(a, b) =


min
s∈[a,b]

f(s) if a ≤ b

max
s∈[a,b]

f(s) if a ≥ b

and FLFD is a modified Lax-Friedrichs flux with parameter D = max
{
F1, F2

}
satisfying

FLFD (a, b) =
f(a) + f(b)

2
−D(b− a).

Remark 6.1. The modified Lax-Friedrichs scheme corresponds to a decomposition of a flux function
f(x) = f1(x) + f2(x), where f1(x) = f(x)/2 + Dx and f2(x) = f(x)/2 − Dx. In other words, it is an
example of a flux-spitting scheme.

In view of Lemma 6.2, from now on, we assume that F (·, ·) is the Godunov flux, i.e.

F (a, b) =


min
s∈[a,b]

f(s) if a ≤ b

max
s∈[a,b]

f(s) if a ≥ b.
(6.3)

Let s(a, b) ∈
[

min(a, b), max(a, b)
]

for any a, b ∈ R. Since F (·, ·) is a Godunov flux, we see that for some
s(a, b), {

F (a, b) = f(s(a, b))

G(a, b) = φ(s(a, b))

where G is the corresponding entropy numerical flux. Note also that G(a, a) = φ(a) ∀a ∈ R.
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Proposition 6.3 (Discrete entropy inequalities). Let the assumptions A.1-A.4 hold, and that F (·, ·) is
the Godunov flux defined by (6.3). Consider an admissible mesh T on Rd with size h, and time step
k = T

N on [0, T ] such that (3.5) holds. Then P-a.s., for any β ∈ A and 0 ≤ ψ ∈ C∞c ([0, T ) × Rd), there
holds

−
N−1∑
n=0

∑
K∈TR

∫
K

(
β(un+1

K )− β(unK)
)
ψ(tn, x) dx+

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
K

φ(unK)~v(t, x) · ∇xψ(tn, x) dx dt

+

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
E

∫
K

∫ 1

0

η(unK ; z)β′
(
unK + λη(unK ; z)

)
ψ(tn, x) dλ dx Ñ(dz, dt)

+

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
E

∫
K

∫ 1

0

(1− λ)η2(unK ; z)β′′
(
unK + λη(unK ; z)

)
ψ(tn, x) dλ dxm(dz) dt

≥ Rh,k, (6.4)

where Rh,k satisfies the following condition: for any P-measurable set B,

E
[
1BR

h,k
]
→ 0 as h→ 0.

Proof. We prove this proposition into several steps.
Step 1: Let T > 0 be fixed and T be an admissible mesh on Rd with size h. Let k = T

N be the time
step for some N ∈ N∗ and tn = nk, n ∈ {0, 1, · · · , N}. Applying Itô-Lévy formula to β(vnK), where vnK is
prescribed by (6.1), and β ∈ A, we have P-a.s.,

β(vnK(tn+1))− β(vnK(tn))

=
1

|K|

∫ tn+1

tn

β′(vnK(t))
∑

L∈N (K)

|σK,L|
{
vnK,L

(
F (unK , u

n
L)− f(unK)

)
− vnL,K

(
F (unL, u

n
K)− f(unK)

)}
+

∫ tn+1

tn

∫
E

∫ 1

0

η(unK ; z)β′
(
vnK(t) + λη(unK ; z)

)
dλ Ñ(dz, dt)

+

∫ tn+1

tn

∫
E

∫ 1

0

(1− λ)η2(unK ; z)β′′
(
vnK(t) + λη(unK ; z)

)
dλm(dz) dt. (6.5)

Let 0 ≤ ψ ∈ C∞c ([0, T )× Rd). Then there exists R > h such that supp ψ ⊂ B(0, R − h)× [0, T ). Define
TR =

{
K ∈ T : K ⊂ B(0, R)

}
and T Rn =

{
(K,L) ∈ T 2

R : L ∈ N (K) and unK > unL
}

. We multiply (6.5)

by |K|ψnK where ψnK = 1
|K|
∫
K
ψ(tn, x) dx and then sum over all K ∈ TR and n ∈ {0, 1, · · · , N − 1}. The

resulting expression reads to

N−1∑
n=0

∑
K∈TR

[
β(un+1

K )− β(unK)
]
|K|ψnK

=

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

β′(vnK(t))
∑

L∈N (K)

|σK,L|
{
vnK,LF (unK , u

n
L)− vnL,KF (unL, u

n
K)
}
ψnK dt

+

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
E

∫ 1

0

η(unK ; z)β′
(
vnK(t) + λη(unK ; z)

)
|K|ψnK dλ Ñ(dz, dt)

+

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
E

∫ 1

0

(1− λ)η2(unK ; z)β′′
(
vnK(t) + λη(unK ; z)

)
|K|ψnK dλm(dz) dt

i.e., Ah,k = Bh,k + Mh,k + Dh,k.

We will study each of the above terms separately.

Step 2: In this step, we will study Bh,k. We express Bh,k as

Bh,k =
(
Bh,k −Bh,k

1

)
+
(
Bh,k

1 −Bh,k
2

)
+
(
Bh,k

2 −Bh,k
3

)
+ Bh,k

3 ,
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where

Bh,k
1 =

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

β′(unK)
∑

L∈N (K)

|σK,L|
{
vnK,LF (unK , u

n
L)− vnL,KF (unL, u

n
K)
}
ψnK dt,

Bh,k
2 =

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∑
L∈N (K)

|σK,L|
{
vnK,LG(unK , u

n
L)− vnL,KG(unL, u

n
K)
}
ψnK dt,

Bh,k
3 = −

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
K

φ(unK)v(x, t) · ∇xψ(x, tn) dx dt.

Claim 1: For any P-measurable set B

E
[
1B(Bh,k −Bh,k

1 )
]
→ 0 (h→ 0).

Proof of the Claim 1. Observe that for a.s. ω ∈ Ω, there exists τnK(ω) ∈ R such that

Bh,k −Bh,k
1

=

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

β′′(τnK)
(
vnK(t)− unK

) ∑
L∈N (K)

|σK,L|
{
vnK,LF (unK , u

n
L)− vnL,KF (unL, u

n
K)
}
ψnK dt

= −
N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

β′′(τnK)
t− tn
|K|

( ∑
L∈N (K)

|σK,L|
{
vnK,LF (unK , u

n
L)− vnL,KF (unL, u

n
K)
})2

ψnK dt

+

N−1∑
n=0

∑
K∈TR

{∫ tn+1

tn

β′′(τnK)
(∫ t

tn

η(unK ; z)Ñ(dz, ds)
)

×
( ∑
L∈N (K)

|σK,L|
{
vnK,LF (unK , u

n
L)− vnL,KF (unL, u

n
K)
})
ψnK dt

}
≡ Th,k

1 + Th,k
2 .

Let us first study E
[
1BTh,k

1

]
. Thanks to the Cauchy-Schwartz inequality, Lemma 4.2, (3.2), (4.5) and

(4.4), we obtain∣∣∣E[1BTh,k
1

]∣∣∣ =

∣∣∣∣∣E
[
1B

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

1

|K|

∫
K

β′′(τnK)
t− tn
|K|

ψ(tn, x) dx dt

×
( ∑
L∈N (K)

|σK,L|
{
vnK,L

(
F (unK , u

n
L)− f(unK)

)
− vnL,K

(
F (unL, u

n
K)− f(unK)

)})2
]∣∣∣∣∣

≤ ||β′′||∞||ψ||∞
N−1∑
n=0

∑
K∈TR

{
k2

|K|

( ∑
L∈N (K)

|σK,L|
(
vnK,L + vnL,K

))

×
∑

L∈N (K)

|σK,L|E
[
vnK,L

(
F (unK , u

n
L)− f(unK)

)2
+ vnL,K

(
F (unL, u

n
K)− f(unK)

)2]}

≤ ||β′′||∞||ψ||∞
N−1∑
n=0

∑
K∈TR

{
k2

|K|
V |∂K|

∑
L∈N (K)

|σK,L|E
[
vnK,L

(
F (unK , u

n
L)− f(unK)

)2
+ vnL,K

(
F (unL, u

n
K)− f(unK)

)2]}

≤
N−1∑
n=0

k
∑
K∈TR

∑
L∈N (K)

|σK,L|E
[
vnK,L

(
F (unK , u

n
L)− f(unK)

)2
+ vnL,K

(
F (unL, u

n
K)− f(unK)

)2]
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× ||β′′||∞||ψ||∞
V

α2

k

h

≤ C1
V

α2
||β′′||∞||ψ||∞

k

h
→ 0 as h→ 0.

Next we estimate E
[
1BTh,k

2

]
. By using Cauchy-Schwarz inequality, Lemmas 4.1 and 4.2 along with (3.2),

(4.5) and (4.4), we get(
E
[
1BTh,k

1

])2

=

(
E

[
1B

N−1∑
n=0

∑
K∈TR

{∫ tn+1

tn

1

|K|

∫
K

β′′(τnK)
(∫ t

tn

η(unK ; z)Ñ(dz, ds)
)
ψ(tn, x) dx dt

×
∑

L∈N (K)

|σK,L|
{
vnK,L

(
F (unK , u

n
L)− f(unK)

)
− vnL,K

(
F (unL, u

n
K)− f(unK)

)}}])2

≤ E

[
N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

1

|K|

{ ∑
L∈N (K)

|σK,L|
{
vnK,L

(
F (unK , u

n
L)− f(unK)

)

− vnL,K
(
F (unL, u

n
K)− f(unK)

)}}2

dt

]

× E
[N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

(∫ t

tn

∫
E

∫
K

β′′(τnK)ψ(tn, x)η(unK ; z)Ñ(dz, ds) dx
)2

dt
]

≤
N−1∑
n=0

∑
K∈TR

k

|K|

{( ∑
L∈N (K)

|σK,L|
(
vnK,L + vnL,K

))

×
∑

L∈N (K)

|σK,L|E
[
vnK,L

(
F (unK , u

n
L)− f(unK)

)2
+ vnL,K

(
F (unL, u

n
K)− f(unK)

)2]}

× ||β′′||2∞||ψ||2∞E
[N−1∑
n=0

∑
K∈TR

|K|
∫ tn+1

tn

∫ t

tn

∫
E

η2(unK ; z)m(dz) ds dt
]

≤
N−1∑
n=0

∑
K∈TR

k
∑

L∈N (K)

|σK,L|E
[
vnK,L

(
F (unK , u

n
L)− f(unK)

)2
+ vnL,K

(
F (unL, u

n
K)− f(unK)

)2]

× ||β′′||2∞||ψ||2∞
V

α2h
cηk

N−1∑
n=0

∑
K∈TR

|K|kE
[
(unK)2

]
≤ C1||β′′||2∞||ψ||2∞

V

α2h
cηk‖uhT ,k‖2L2(Ω×ΠT ) = C

(
T, β, ψ, u0, ξ, F1, F2, α, cη, V

)k
h
.

Hence, E
[
1BTh,k

2

]
→ 0 as k

h → 0. This proves the Claim 1 .

Next we move on to estimate Bh,k
1 −Bh,k

2 . In view of (4.4), we note that∑
L∈N (K)

(
vnK,L − vnL,K

)
f(unK) = 0 =

∑
L∈N (K)

(
vnK,L − vnL,K

)
φ(unK),

and hence

Bh,k
1 −Bh,k

2

=

N−1∑
n=0

∑
K∈TR

k

|K|
∑

L∈N (K)

|σK,L|

{
vnK,L

[
β′(unK)

(
F (unK , u

n
L)− f(unK)

)
−
(
G(unK , u

n
L)− φ(unK)

)]
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− vnK,L
[
β′(unK)

(
F (unL, u

n
K)− f(unK)

)
−
(
G(unL, u

n
K)− φ(unK)

)]}∫
K

ψ(tn, x) dx.

Claim 2: Bh,k
1 −Bh,k

2 ≥ 0 almost surely.

Proof of the Claim 2. In view of the above expression of Bh,k
1 −Bh,k

2 , it suffices to show that

vnK,L

[
β′(unK)

(
F (unK , u

n
L)− f(unK)

)
−
(
G(unK , u

n
L)− φ(unK)

)]
− vnK,L

[
β′(unK)

(
F (unL, u

n
K)− f(unK)

)
−
(
G(unL, u

n
K)− φ(unK)

)]
≥ 0. (6.6)

Let us first consider the case unK < unL. The case unK > unL will be similar. Since F (·, ·) is a Godunov
flux, there exists s(unK , u

n
L) ∈ [unK , u

n
L] such that

F (unK , u
n
L) = f(s(unK , u

n
L)) = min

t∈[unK ,u
n
L]
f(t).

Thus, by using integration by parts formula, we have

β′(unK)
(
F (unK , u

n
L)− f(unK)

)
−
(
G(unK , u

n
L)− φ(unK)

)
= β′(unK)

(
f(s(unK , u

n
L))− f(unK)

)
−
(
φ(s(unK , u

n
L))− φ(unK)

)
=

∫ s(unK ,u
n
L)

unK

f ′(t)β′(unK) dt−
∫ s(unK ,u

n
L)

unK

f ′(t)β′(t) dt =

∫ s(unK ,u
n
L)

unK

f ′(t)
(
β′(unK)− β′(t)

)
dt

= f(s(unK , u
n
L))
(
β′(unK)− β′(s(unK , unL))

)
+

∫ s(unK ,u
n
L)

unK

f(t)β′′(t) dt

≥ f(s(unK , u
n
L))
(
β′(unK)− β′(s(unK , unL))

)
+

∫ s(unK ,u
n
L)

unK

f(s(unK , u
n
L))β′′(t) dt = 0.

Again, there exists s(unL, u
n
K) ∈ [unK , u

n
L] such that

F (unL, u
n
K) = f(s(unL, u

n
K)) = max

t∈[unK ,u
n
L]
f(t).

Thanks to integration by parts formula, we obtain

β′(unK)
(
F (unL, u

n
K)− f(unK)

)
−
(
G(unL, u

n
K)− φ(unK)

)
= f(s(unL, u

n
K))
(
β′(unK)− β′(s(unL, unK))

)
+

∫ s(unL,u
n
K)

unK

f(t)β′′(t) dt

≤ f(s(unL, u
n
K))
(
β′(unK)− β′(s(unL, unK))

)
+

∫ s(unL,u
n
K)

unK

f(s(unL, u
n
K))β′′(t) dt = 0.

Putting things together yields (6.6). This completes the proof of the claim.

Next we move on to estimate E
[
1B
(
Bh,k

2 −Bh,k
3

)]
. Performing the calculations as in the proof of point

2.3 of [7, Proposition 4], we obtain, thanks to Lemma 4.2, b)

E
[
1B
(
Bh,k

2 −Bh,k
3

)]
≤C h

N−1∑
n=0

k
∑

(K,L)∈T Rn

|σK,L|E

[
vnK,L

{
max

unL≤c≤d≤unK

∣∣F (d, c)− f(d)
∣∣+ max

unL≤c≤d≤unK

∣∣F (d, c)− f(c)
∣∣}

+ vnL,K

{
max

unL≤c≤d≤unK

∣∣f(d)− F (c, d)
∣∣+ max

unL≤c≤d≤unK

∣∣f(c)− F (c, d)
∣∣}]+ C h

≤ C
√
h→ 0 as h→ 0,

where C > 0 is a constant depending only on f, ξ, α, F1, F2, c(~v), ψ, cη, β, T .

Step 3: This step is regarding the study of the stochastic term Mh,k. We decompose Mh,k as follows:

Mh,k = Mh,k −Mh,k
1 + Mh,k

1 ,



18 ANANTA K. MAJEE

where

Mh,k
1 =

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
E

∫
K

∫ 1

0

η(unK ; z)β′
(
unK + λη(unK ; z)

)
ψ(tn, x) dλ dx Ñ(dz, dt).

Claim 3: For any P-measurable set B

E
[
1B
(
Mh,k

1 −Mh,k
)]
→ 0 (h→ 0).

Proof of Claim 3. In view of triangle inequality, one has∣∣∣E[1B(Mh,k
1 −Mh,k

)]∣∣∣
≤

∣∣∣∣∣E[1B
N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
E

∫
K

∫ 1

0

η(unK ; z)
{
β′
(
unK + λη(unK ; z)

)
− β′

(
vnK(t) + λη(unK ; z)

)}
×
(
ψ(tn, x)− ψ(t, x)

)
dλ dx Ñ(dz, dt)

]∣∣∣∣∣
+

∣∣∣∣∣E[1B
N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
E

∫
K

∫ 1

0

η(unK ; z)
{
β′
(
unK + λη(unK ; z)

)
− β′

(
vnK(t) + λη(unK ; z)

)}
× ψ(t, x) dλ dx Ñ(dz, dt)

]∣∣∣∣∣
≡Mh,k

1 +Mh,k
2 .

First we consider Mh,k
1 . Note that suppψ ⊂ B(0, R − h) × [0, T ) for some R > h. Thanks to Cauchy-

Schwarz inequality, the assumptions A.1-A.4, and Itô-Lévy isometry, we get

∣∣Mh,k
1

∣∣2 ≤ (N−1∑
n=0

{ ∑
K∈TR

∫
K

E
[( ∫ tn+1

tn

∫
E

∫ 1

0

{
β′
(
unK + λη(unK ; z)

)
− β′

(
vnK(t) + λη(unK ; z)

)}

× η(unK ; z)
(
ψ(tn, x)− ψ(t, x)

)
dλÑ(dz, dt)

)2]
dx

} 1
2
)2

|B(0, R)|

≤ 2||β′||2L∞ |B(0, R)|
(N−1∑
n=0

{ ∑
K∈TR

∫
K

E
[ ∫ tn+1

tn

∫
E

η2(unK ; z)
(
ψ(tn, x)− ψ(t, x)

)2
m(dz) dt

]
dx
} 1

2
)2

≤ 2k||β′||2L∞ |B(0, R)| ||∂tψ||2L∞cη

(N−1∑
n=0

k
{ ∑
K∈TR

|K|E
[
(unK)2

]} 1
2
)2

≤ kC
(
β′, ∂tψ, cη, |B(0, R)|

)
‖uhT ,k‖2L∞(0,T ;L2(Ω×Rd))

≤ hC
(
ξ, α, cf , V, β

′, ∂tψ, cη, |B(0, R)|
)
‖uhT ,k‖2L∞(0,T ;L2(Ω×Rd)) (by (4.11)).

Thus, we conclude that

Mh,k
1 −→ 0 as h→ 0.

Let us turn our focus on the termMh,k
2 . Here we note that the boundedness of η i.e., |η(u, z)| ≤ Ch1(z)

for any u ∈ R and z ∈ E is crucial. In view of the Cauchy-Schwarz inequality and Itô-Lévy isometry, we
obtain∣∣∣Mh,k

2

∣∣∣2 ≤ |B(0, R)|
N−1∑
n=0

∑
K∈TR

∫
K

E
[ ∫ tn+1

tn

∫
E

∫ 1

0

{
β′
(
unK + λη(unK ; z)

)
− β′

(
vnK(t) + λη(unK ; z)

)}2

× η2(unK ; z)ψ2(t, x) dλm(dz) dt
]
dx
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≤ C(R)||β′′||2∞||ψ||2∞
N−1∑
n=0

∑
K∈TR

∫
K

E
[ ∫ tn+1

tn

∫
E

|unK − vnK(t)|2η2(unK ; z)m(dz)dt
]
dx

(by the boundedness of η)

≤ C
(
R, β′′, cη, ψ,

)N−1∑
n=0

∑
K∈TR

∫
K

∫ tn+1

tn

E
[
(unK − vnK(t))2

]
dt dx

= C
(
R, β′′, ψ, cη

)
‖uhT ,k − vhT ,k‖2L2(Ω×ΠT ) −→ 0 as h→ 0,

where in the last line, we invoke (4.11) and Proposition 6.1.

Step 4: In this step, we consider the additional term Dh,k. We rewrite Dh,k as

Dh,k = Dh,k −Dh,k
1 + Dh,k

1 ,

where

Dh,k
1 =

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
E

∫
K

∫ 1

0

(1− λ)η2(unK ; z)β′′
(
unK + λη(unK ; z)

)
ψ(tn, x) dλ dxm(dz) dt.

Claim 4: For any P-measurable set B,

E
[
1B
(
Dh,k

1 −Dh,k
)]
→ 0 (h→ 0).

Proof of Claim 4. In view of the assumptions A.1-A.4, Proposition 6.1 and the CFL condition (4.11),
we have, for some constant C ≡ C(ξ, α, F1, F2, ψ, cη, β, T ) ∈ R∗+∣∣∣E[1B(Dh,k

1 −Dh,k
)]∣∣∣

=

∣∣∣∣∣E[1B
N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
E

∫
K

∫ 1

0

{
β′′
(
unK + λη(unK ; z)

)
− β′′

(
vnK(t) + λη(unK ; z)

)}
× (1− λ)η2(unK ; z)ψ(tn, x) dλ dxm(dz) dt

]∣∣∣∣∣
≤ ||β′′′||∞ ||ψ||∞E

[N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
E

∫
B(0,R)

η2(unK ; z)
∣∣unK − vnK(t)

∣∣dxm(dz) dt
]

(by the boundedness of η)

≤ C E
[N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
B(0,R)

∣∣unK − vnK(t)
∣∣dx dt]

= C ‖uhT ,k − vhT ,k‖L1
(

Ω×B(0,R)×[0,T )
) −→ 0 as h→ 0.

Step 5: In this final step, we wrap up all the analysis done in Step 1- Step 4. Define

Rh,k = (Bh,k −Bh,k
1 ) +

(
Bh,k

2 −Bh,k
3

)
+
(
Mh,k

1 −Mh,k
)

+
(
Dh,k

1 −Dh,k
)
.

Since P-a.s., Ah,k = Bh,k + Mh,k + Dh,k, summarizing all we infer that

−
N−1∑
n=0

∑
K∈TR

∫
K

(
β(un+1

K )− β(unK)
)
ψ(x, tn) dx

+

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
K

φ(unK)v(x, t) · ∇xψ(x, tn) dx dt

+

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
E

∫
K

∫ 1

0

η(unK ; z)β′
(
unK + λη(unK ; z)

)
ψ(x, tn)dλ dx Ñ(dz, dt)
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+

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
E

∫
K

∫ 1

0

(1− λ)η2(unK ; z)β′′
(
unK + λη(unK ; z)

)
ψ(x, tn)dλ dxm(dz) dt

≥ Rh,k.

Again, thanks to Claim 1, Claim 3 and Claim 4, we see that for any P-measurable set B,

E
[
1BR

h,k
]
→ 0 as h→ 0 (under (3.5)).

This completes the proof. �

Note that, in the proof of Proposition 6.3, we only use the fact that F (·, ·) is Godunov flux to study the

terms Bh,k
1 −Bh,k

2 and Bh,k
2 −Bh,k

3 . In view of Lemma 6.2, we may expect the same result (cf. Proposition
6.3) for a general monotone flux. Regarding this, we have the following proposition.

Proposition 6.4. Let the assumptions A.1-A.4 hold and T be an admissible mesh on Rd with size h.
Let T > 0 be fixed and N ∈ N∗ be such that the time step k = T

N satisfies (3.5). Then (6.4) holds and

for any P-measurable set B, E
[
1BR

h,k
]
→ 0 as h→ 0, where Rh,k is described by Proposition 6.3.

Proof. In view of the above discussion, it suffices to show: for any general monotone flux F (·, ·)
i) P-a.s., Bh,k

1 −Bh,k
2 ≥ 0.

ii) for any P-measurable set B, E
[
1B
(
Bh,k

2 −Bh,k
3

)]
→ 0 as h→ 0.

Let F be a monotone flux. Then thanks to Lemma 6.2, there exists θ(a, b) ∈ (0, 1) such that

F (a, b) = θ(a, b)FG(a, b) +
(
1− θ(a, b)

)
FLFD (a, b),

where FG is a Godunov flux and FLFD is a modified Lax-Friedrichs flux. Then, the numerical entropy
flux G takes of the form

G(a, b) = θ(a, b)GG(a, b) +
(
1− θ(a, b)

)
GLFD (a, b),

where GG(a, b) = φ(s(a, b)) and GLFD (a, b) =
φ(a) + φ(b)

2
−D(β(b)− β(a)). Under this decompositions,

the expression Bh,k
1 −Bh,k

2 reads as

Bh,k
1 −Bh,k

2

=

N−1∑
n=0

∑
K∈TR

k

|K|
∑

L∈N (K)

θ(unK , u
n
L)|σK,L|

{
vnK,L

[
β′(unK)

(
FG(unK , u

n
L)− f(unK)

)
−
(
GG(unK , u

n
L)

− φ(unK)
)]
− vnK,L

[
β′(unK)

(
FG(unL, u

n
K)− f(unK)

)
−
(
GG(unL, u

n
K)− φ(unK)

)]}∫
K

ψ(tn, x) dx

+

N−1∑
n=0

∑
K∈TR

k

|K|
∑

L∈N (K)

(
1− θ(unK , unL)

)
|σK,L|

{
vnK,L

[
β′(unK)

(
FLFD (unK , u

n
L)− f(unK)

)
−
(
GLFD (unK , u

n
L)− φ(unK)

)]
− vnK,L

[
β′(unK)

(
FLFD (unL, u

n
K)− f(unK)

)
−
(
GLFD (unL, u

n
K)− φ(unK)

)]}∫
K

ψ(tn, x) dx

≡ Bh,k
1,G −Bh,k

2,G +
(
Bh,k

1,LF −Bh,k
2,LF

)
.

Since FG is a Godunov numerical flux, the same argument (cf. proof of Bh,k
1 − Bh,k

2 ≥ 0) yields that

Bh,k
1,G − Bh,k

2,G ≥ 0 P-a.s. To deal with second term, we use the fact that any modified Lax-Friedrichs
scheme is basically a flux-splitting scheme, see Remark 6.1. Thus, by using a similar argument as in the
proof of Discrete entropy inequality of [31] we conclude that

P-a.s., Bh,k
1,LF −Bh,k

2,LF ≥ 0.
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Once again, using the above form of the numerical flux and its corresponding entropy flux, we obtain

Bh,k
2 −Bh,k

3 =

{
N−1∑
n=0

∑
K∈TR

k

|K|
∑

L∈N (K)

θ(unK , u
n
L)|σK,L|

{
vnK,L

(
GG(unK , u

n
L)− φ(unK)

)
− vnL,K

(
GG(unL, u

n
K)− φ(unK)

)}∫
K

ψ(tn, x) dx

+

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
K

θ(unK , u
n
L)φ(unK)~v(t, x) · ∇xψ(tn, x) dx dt

}

+

{
N−1∑
n=0

∑
K∈TR

k

|K|
∑

L∈N (K)

(
1− θ(unK , unL)

)
|σK,L|

{
vnK,L

(
GLFD (unK , u

n
L)− φ(unK)

)
− vnL,K

(
GLFD (unL, u

n
K)− φ(unK)

)}∫
K

ψ(tn, x) dx

+

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
K

(
1− θ(unK , unL)

)
φ(unK)~v(t, x) · ∇xψ(tn, x) dx dt

}
≡
(
Bh,k

2,G −Bh,k
3,G

)
+
(
Bh,k

2,LF −Bh,k
3,LF

)
.

As GG is the numerical flux corresponding to a Godunov flux, one has (cf. Step 2 of Proposition 6.3)

E
[
1B
(
Bh,k

2,G −Bh,k
3,G

)]
→ 0 (h→ 0) for any P-measurable set B.

Once again, we use similar technique as in [31] for a flux-splitting scheme and conclude the convergence

of E
[
1B
(
Bh,k

2,LF −Bh,k
3,LF

)]
. This finishes the proof. �

To prove convergence of the monotone finite volume scheme, it is required to have a continuous entropy
inequality on the discrete solutions. We have the following proposition which essentially gives the entropy
inequality for uhT ,k.

Proposition 6.5 (Entropy Inequality for Approximate Solution). Let the assumptions A.1-A.4 hold,
and T > 0 be fixed. Let T be an admissible mesh on Rd with size h in the sense of Definition 3.1. Let
k = T

N be the time step for some N ∈ N∗ satisfying (3.5). Then the following hold:

a) For any β ∈ A and 0 ≤ ψ ∈ C∞c ([0, T )× Rd), there holds∫
Rd
β(u0(x))ψ(0, x) dx+

∫
ΠT

{
β(uhT ,k)∂tψ(t, x) + φ(uhT ,k)~v(t, x) · ∇xψ(t, x)

}
dt dx

+

∫
ΠT

∫
E

∫ 1

0

η(uhT ,k; z)β′
(
uhT ,k + λη(uhT ,k; z)

)
ψ(t, x) dλ Ñ(dz, dt) dx

+

∫
ΠT

∫
E

∫ 1

0

(1− λ)η2(uhT ,k; z)β′′
(
uhT ,k + λη(uhT ,k; z)

)
ψ(t, x) dλm(dz) dt dx ≥ Rh,k P-a.s. (6.7)

b) For any P-measurable set B,

E
[
1BRh,k

]
→ 0 (h→ 0).

Proof. We will prove this proposition into two steps. In the first step, we will show the inequality (6.7)
for a convenient Rh,k, and establish the required convergence for Rh,k in the final step.

Step 1: Let the assumptions of the proposition hold true. Since (3.5) holds, we may assume that the
CFL condition (4.11) holds as well. Therefore the estimates given in Lemmas 4.1 and 4.2 and Proposition
6.3 hold as well. Let ψ ∈ C∞c ([0, T )× Rd) be a nonnegative test function. Then there exists R > h such
that supp ψ ⊂ B(0, R− h)× [0, T ). Also define TR = {K ∈ T : K ⊂ B(0, R)}.

Note that ψ(tN , x) = 0 for any x ∈ Rd. Using the summation by parts formula,

N∑
n=1

an
(
bn − bn−1

)
= aNbN − a0b0 −

N−1∑
n=0

bn
(
an+1 − an

)
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we obtain

−
N−1∑
n=0

∑
K∈TR

∫
K

(
β(un+1

K )− β(unK)
)
ψ(tn, x) dx

=
∑
K∈TR

∫
K

β(u0
K)ψ(0, x) dx+

∫ T

k

∫
Rd
β(uhT ,k)∂tψ(t− k, x) dx dt. (6.8)

Invoking (6.8) in (6.4), we obtain (6.7) for a convenient Rh,k given by

Rh,k =Rh,k +
{∫

Rd
β(u0(x))ψ(0, x) dx−

∑
K∈TR

∫
K

β(u0
K)ψ(0, x) dx

}
+
{∫

ΠT

β(uT ,k)∂tψ(t, x) dt dx−
∫ T

k

∫
Rd
β(uhT ,k)∂tψ(t− k, x) dx dt

}
+
{∫

ΠT

φ(uhT ,k)~v(t, x) · ∇xψ(t, x) dt dx−
N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
K

φ(unK)~v(t, x) · ∇xψ(tn, x) dx dt
}

+

{∫
Rd

∫ T

0

∫
E

∫ 1

0

η(uhT ,k; z)β′
(
uhT ,k + λη(uhT ,k; z)

)
ψ(t, x) dλ Ñ(dz, dt) dx

−
N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
E

∫
K

∫ 1

0

η(unK ; z)β′
(
unK + λη(unK ; z)

)
ψ(tn, x) dλ dx Ñ(dz, dt)

}

+

{∫
Rd

∫ T

0

∫
E

∫ 1

0

(1− λ)η2(uhT ,k; z)β′′
(
uhT ,k + λη(uhT ,k; z)

)
ψ(t, x) dλm(dz) dt dx

−
N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
E

∫
K

∫ 1

0

(1− λ)η2(unK ; z)β′′
(
unK + λη(unK ; z)

)
ψ(tn, x) dλ dxm(dz) dt

}
≡ Rh,k + Ih,k + T h,k +Dh,k +Mh,k +Ah,k.

Step 2: In this step, we will show the convergence of the following quantities:

E
[
1BR

h,k
]
, E

[
1BIh,k

]
, E

[
1BT h,k

]
, E

[
1BDh,k

]
, E

[
1BMh,k

]
, and E

[
1BAh,k

]
where B being a P- measurable subset of Ω.

a). Convergence of E
[
1B Ih,k

]
: Thanks to Lebesgue differentiation theorem, for almost all x ∈ K,∣∣u0(x)− u0

K

∣∣→ 0 as diameter of K tends to zero (i.e.,h→ 0). Now∣∣∣E[1B Ih,k]∣∣∣ =
∣∣∣E[1B ∑

K∈TR

∫
K

(
β(u0(x))− β(u0

K)
)
ψ(x, 0) dx

]∣∣∣
≤ ||β′||∞E

[ ∑
K∈TR

∫
K

∣∣u0(x)− u0
K

∣∣ψ(x, 0) dx
]
,

and hence E
[
1B Ih,k

]
→ 0 as h→ 0.

b). Convergence of E
[
1B T h,k

]
: We use Lemma 4.1, the CFL condition (4.11) along with triangle

inequality to have∣∣∣E[1B T h,k]∣∣∣ =
∣∣∣E[1B ∫ T

k

∫
Rd
β(uhT ,k)

(
∂tψ(t, x)− ∂tψ(t− k, x)

)
dx dt

]
+ E

[
1B

∫ k

0

∫
Rd
β(uhT ,k)∂tψ(t, x) dx dt

]∣∣∣
≤ ||β′||∞ k

(
||∂tψ||∞‖uhT ,k‖L∞

(
0,T ;L1(Ω×B(0,R))

) + ||∂ttψ||∞ ‖uhT ,k‖L1
(

Ω×B(0,R)×[0,T )
)),

and hence E
[
1B T h,k

]
→ 0 as h→ 0.
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c). Convergence of E
[
1B Dh,k

]
: In view of (3.4), we see that

∣∣∣E[1B Dh,k]∣∣∣ =
∣∣∣E[1B N−1∑

n=0

∑
K∈TR

∫
K

∫ tn+1

tn

φ(unK)~v(t, x) ·
(
∇xψ(t, x)−∇xψ(tn, x)

)
dt dx

]∣∣∣
≤ V ||∇x∂tψ||∞k

N−1∑
n=0

∑
K∈TR

∫
K

∫ tn+1

tn

E
[∣∣φ(unK)

∣∣] dx dt
≤ V ||∇x∂tψ||∞k||β′||∞||f ′||∞

N−1∑
n=0

∑
K∈RR

∫
K

∫ tn+1

tn

E
[
|unK |

]
dx dt

≤ Ck‖uhT ,k‖L1
(

Ω×B(0,R)×[0,T )
) → 0 as h→ 0,

where C ≡ C(β, f, V, ψ) ∈ R∗+ is a constant. In the above, we have used the boundedness condition of
~v(t, x), Lemma 4.1 and (4.11).

d). Convergence of E
[
1BMh,k

]
: In view of the definition of uT ,k, Cauchy-Schwarz inequality, Itô-Lévy

isometry, the CFL condition (4.11) and Lemma 4.1, we see that∣∣∣E[1BMh,k
]∣∣∣2 =

∣∣∣E[1B N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
E

∫
K

∫ 1

0

η(unK ; z)β′
(
unK + λη(unK ; z)

)
×
(
ψ(t, x)− ψ(tn, x)

)
dλ dx Ñ(dz, dt)

]∣∣∣2
≤ |B(0, R)|

(
N−1∑
n=0

{
E
[ ∑
K∈TR

∫ tn+1

tn

∫
E

∫
K

∫ 1

0

η2(unK ; z)β′
2(
unK + λη(unK ; z)

)

×
(
ψ(t, x)− ψ(tn, x)

)2
dλ dxm(dz) dt

]} 1
2
)2

≤ C(R,ψ, cη, β)k
(N−1∑
n=0

k
( ∑
K∈TR

|K|E
[
(unK)2

]) 1
2
)2

≤ C(R, cη, ψ, β, T ) k‖uhT ,k‖2L∞(0,T ;L2(Ω×Rd))) → 0 as h→ 0.

e). Convergence of E
[
1B Ah,k

]
and E

[
1BR

h,k
]

: To show the convergence, we proceed as follows. We

rewrite Ah,k as

Ah,k =

N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
E

∫
K

∫ 1

0

(1− λ)η2(unK ; z)β′′
(
unK + λη(unK ; z)

)
×
{
ψ(t, x)− ψ(tn, x)

}
dλ dxm(dz) dt.

Therefore, by using Lemma 4.1 and the CFL condition (4.11), we obtain∣∣∣E[1B Ah,k]∣∣∣ ≤ ||β′′||∞k||∂tψ||∞E
[N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
E

∫
K

η2(unK ; z) dxm(dz) dt
]

(by the assumption A.3 on η)

≤ ||β′′||∞k||∂tψ||∞cη
N−1∑
n=0

∑
K∈TR

∫ tn+1

tn

∫
K

E
[
(unK)2

]
dx dt

≤ ||β′′||∞k||∂tψ||∞cη‖uhT ,k‖2L2(Ω×ΠT ) → 0 as h→ 0.

We have seen already that E
[
1BR

h,k
]
→ 0 as h→ 0 (cf. Proposition 6.3). This completes the proof. �
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7. Proof of Main Theorem

Having all the necessary a-priori bounds and entropy inequalities on the approximate solution uhT ,k
at hand, we are now in a position to prove Main theorem. As we mentioned earlier that u(θ, α) given
by Proposition 5.1 will serve as a possible generalized entropy solution to (1.1). Since u(t, x, α) ∈
L∞(0, T ;L2(Ω × Rd × (0, T ))), it remains only to show that u(t, x, α) satisfies the entropy inequalities
(2.1).

7.1. Proof of Main Theorem. Let the assumptions A.1-A.4 be true and T be an admissible mesh
on Rd with size h in the sense of Definition 3.1. Again, let k = T

N be the time step, for some N ∈ N∗
with fixed T > 0 such that (3.5) holds. In this way, we assume that the CFL condition (4.11) holds and
hence the results of Lemmas 4.1, 4.2, Propositions 6.1, 6.3 and 6.5 hold. Let ψ ∈ C∞c ([0, T ) × Rd) be
a nonnegative test function. Then there exists R > h such that supp ψ ⊂ B(0, R − h) × [0, T ). Define
TR = {K ∈ T : K ⊂ B(0, R)}. Let B ∈ FT . In view of (6.7), we have

E
[
1B

∫
ΠT

{
β(uhT ,k)∂tψ(t, x) + φ(uhT ,k)~v(t, x) · ∇xψ(t, x)

}
dt dx

]
+ E

[
1B

∫
ΠT

∫
E

∫ 1

0

η(uhT ,k; z)β′
(
uhT ,k + λη(uhT ,k; z)

)
ψ(t, x) dλ Ñ(dz, dt) dx

]
+ E

[
1B

∫
ΠT

∫
E

∫ 1

0

(1− λ)η2(uhT ,k; z)β′′
(
uhT ,k + λη(uhT ,k; z)

)
ψ(t, x) dλm(dz) dt dx

]
+ E

[
1B

∫
Rd
β(u0(x))ψ(0, x) dx

]
≥ E

[
1BRh,k

]
i.e., H1,h +H2,h +H3,h + E

[
1B

∫
Rd
β(u0(x))ψ(0, x) dx

]
≥ E

[
1BRh,k

]
. (7.1)

We would like to pass to the limit in (7.1) as h → 0. For this, we use the technique of Young measure
theory in stochastic setting. Let (Θ,Σ, µ) be a σ- finite measure space prescribed in Section 5. Note that
L2(Θ,Σ, µ) is a closed subspace of the larger space L2

(
0, T ;L2((Ω,FT ), L2(Rd))

)
and hence the weak

convergence in L2
(
Θ,Σ, µ

)
would imply weak convergence in L2

(
0, T ;L2((Ω,FT ), L2(Rd))

)
. Now, for

any B ∈ FT , the functions 1B∂tψ(t, x), 1B∂xiψ(t, x), 1Bψ(t, x) are all members of
L2
(
0, T ;L2((Ω,FT ), L2(Rd))

)
. Therefore, in view of Proposition 5.1 and the above discussion, one has

lim
h→0
H1,h = lim

h→0
E
[
1B

∫
ΠT

{
β(uhT ,k)∂tψ(t, x) + φ(uhT ,k)~v(t, x) · ∇xψ(t, x)

}
dt dx

]
= E

[
1B

∫
ΠT

∫ 1

0

{
β(u(t, x, α))∂tψ(t, x) + φ(u(t, x, α))~v(t, x) · ∇xψ(t, x)

}
dα dt dx

]
. (7.2)

Next we want to pass to the limit in H3,h. For this, we fix (λ, z), and define a Carathéodory function

Gλ,z(r, x, ω, ξ) = 1B(ω)(1− λ)η2(ξ, z)β′′
(
ξ + λη(ξ, z)

)
ψ(r, x).

Note that {Gλ,z(r, x, ω, uhnT ,k(r, x, ω))}n is uniformly integrable in L1((Θ,Σ, µ);R). Thus, in view of

Proposition 5.1 we have, for fixed (λ, z) ∈ (0, 1)×E

lim
h→0

E
[ ∫

ΠT

1B(1− λ)η2(uhT ,k; z)β′′
(
uhT , k + λη(uhT , k; z)

)
ψ(t, x) dt dx

]
=E
[ ∫

ΠT

∫ 1

0

1B(1− λ)η2(u(t, x, α); z)β′′
(
u(t, x, α) + λη(u(t, x, α); z)

)
ψ(t, x) dα dt dx

]
.

Thanks to the assumption A.3, and Lemma 4.1, we invoke dominated convergence theorem and have

lim
h→0
H3,h = lim

h→0
E
[
1B

∫
ΠT

∫
E

∫ 1

0

(1− λ)η2(uhT ,k; z)β′′
(
uhT ,k + λη(uhT ,k; z)

)
ψ(t, x) dλm(dz) dt dx

]
=E
[
1B

∫
ΠT

∫
E

∫ 1

0

∫ 1

0

(1− λ)η2(u(t, x, α); z)β′′
(
u(t, x, α) + λη(u(t, x, α); z)

)
× ψ(t, x) dα dλm(dz) dt dx

]
. (7.3)
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Now passage to the limit in the martingale term requires some additional reasoning. Let Γ = Ω×[0, T ]×E,
G = PT × L(E) and ς = P⊗ λt ⊗m(dz), where L(E) represents a Lebesgue σ- algebra on E. The space
L2
(
(Γ,G, ς);R

)
represents the space of square integrable predictable integrands for Itô-Lévy integrals

with respect to the compensated Poisson random measure Ñ(dz, dt). Moreover, by Itô-Lévy isometry
and martingale representation theorem, it follows that Itô-Lévy integral defines isometry between two
Hilbert spaces L2

(
(Γ,G, ς);R

)
and L2

(
(Ω,FT );R

)
. In other words, if I denotes the Itô-Lévy integral

operator, i.e., the application

I : L2
(
(Γ,G, ς);R

)
→ L2

(
(Ω,FT );R

)
v 7→

∫ T

0

∫
E

v(ω, z, r)Ñ(dz, dr)

and {Xn}n be a sequence in L2
(
(Γ,G, ς);R

)
converges weakly to X; then I(Xn) will converge weakly

to I(X) in L2
(
(Ω,FT );R

)
. Note that, for fixed z ∈ E, G(t, x, ω, ξ) =

(
β
(
ξ + η(ξ; z)

)
− β(ξ)

)
ψ(t, x)

is a Carathéodory function and {G(t, x, ω, uhnT ,k(t, x, ω))}n is uniformly integrable in L1((Θ,Σ, µ);R).

Therefore, one can apply Proposition 5.1 and conclude that for m(dz)-almost every z ∈ E and g(t, z) ∈
L2
(
(Γ,G, ς);R

)
,

lim
h→0

E
[ ∫ T

0

∫
Rd

(
β
(
uhT ,k + η(uhT ,k; z)

)
− β(uhT ,k)

)
ψ(r, x)g(r, z) dx dr

]
= E

[ ∫ T

0

∫
Rd

∫ 1

0

(
β
(
u(r, x, α) + η(u(r, x, α); z)

)
− β(u(r, x, α))

)
ψ(r, x)g(r, z) dα dx dr

]
.

We apply dominated convergence theorem along with Lemma 4.1 and the assumption A.3 to have

lim
h→0

E
[ ∫ T

0

∫
E

∫
Rd

(
β
(
uhT ,k + η(uhT ,k; z)

)
− β(uhT ,k)

)
ψ(r, x)h(r, z) dxm(dz) dr

]
= E

[ ∫ T

0

∫
E

{∫
Rd

∫ 1

0

(
β
(
u(r, x, α) + η(u(r, x, α); z)

)
− β(u(r, x, α))

)
× ψ(r, x)h(r, z) dα dx

}
m(dz) dr

]
.

Hence, if we denote

Xn(t, z) =

∫
Rd

(
β
(
uhT ,k + η(uhT ,k; z)

)
− β(uhT ,k)

)
ψ(t, x) dx

and

X(t, z) =

∫
Rd

∫ 1

0

(
β
(
u(t, x, α) + η(u(t, x, α); z)

)
− β(u(t, x, α))

)
ψ(t, x) dα dx

then, Xn converges to X in L2
(
(Γ,G, ς);R

)
which implies, in view of the above discussion∫ T

0

∫
E

Xn(t, z)Ñ(dz, dt) ⇀

∫ T

0

∫
E

X(t, z)Ñ(dz, dt) in L2
(
(Ω,FT );R

)
.

In other words, since B ∈ FT , we obtain

lim
h→0
H2,h = lim

h→0
E
[
1B

∫
ΠT

∫
E

∫ 1

0

η(uhT ,k; z)β′
(
uhT ,k + λη(uhT ,k; z)

)
ψ(t, x) dλ Ñ(dz, dt) dx

]
= E

[
1B

∫
ΠT

∫
E

∫ 1

0

∫ 1

0

η(u(t, x, α); z)β′
(
u(t, x, α) + λη(u(t, x, α); z)

)
× ψ(t, x) dα dλ Ñ(dz, dt) dx

]
. (7.4)

By (7.2),(7.3) and (7.4), and the fact that E
[
1BRh,k

]
→ 0 as h→ 0 for any B ∈ FT , thanks to Proposition

6.5, one can pass to the limit as h→ 0 in (7.1) yielding (2.1). This shows that u(x, t, α) is a generalized
entropy solution of (1.1). Again thanks to the uniqueness of generalized entropy solutions (cf. Theorem

2.2), u(t, x, α) is independent of α and hence ū(t, x) =
∫ 1

0
u(t, x, α) dα is the unique entropy solution of
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(1.1). Moreover, the whole sequence of uhT , k(t, x) converges to ū(t, x) in Lploc(Rd;Lp(Ω× (0, T ))) for any
1 ≤ p < 2. This completes the proof.

Acknowledgment: The author would like to thank Prof. Ujjwal Koley (TIFR-CAM, Bangalore) for
his helpful discussions and comments.
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